Viable Architectures for High-Performance Computing
نویسندگان
چکیده
Existing interprocessor connection networks are often plagued by poor topological properties that result in large memory latencies for distributed shared-memory (DSM) computers or multicomputers. On the other hand, scalable networks with very good topological properties are often impossible to build because of their prohibitively high very large scale integration (VLSI) (e.g. wiring) complexity. Such a network is the generalized hypercube (GH). The GH supports full connectivity of all of its nodes in each dimension and is characterized by outstanding topological properties. Also, low-dimensional GHs have very large bisection widths. We present here the class of highly-overlapping windows (HOWs) networks, which are capable of lower complexity than GHs, comparable performance and better scalability. HOWs are obtained from GHs by uniformly removing edges to produce feasible systems of lower wiring complexity. Resulting systems contain numerous highly-overlapping GHs of smaller size. The GH, the binary hypercube and the mesh all belong to this new class of interconnections. In practical cases, HOWs have higher bisection width than tori with similar node and channel costs. Also, HOWs have a very large degree of fault tolerance. This paper focuses on 2-D HOW systems. We analyze the hardware cost of HOWs, present graph embeddings and communications algorithms for HOWs, carry out performance comparisons with binary hypercubes and GHs and simulate HOWs under heavy communication loads. Our results show the suitability of HOWs for very-high-performance computing.
منابع مشابه
A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment
With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...
متن کاملمدل عملکردی تحلیلی FPGA برای پردازش با قابلیت پیکربندی مجدد
Optimizing FPGA architectures is one of the key challenges in digital design flow. Traditionally, FPGA designers make use of CAD tools for evaluating architectures in terms of the area, delay and power. Recently, analytical methods have been proposed to optimize the architectures faster and easier. A complete analytical power, area and delay model have received little attention to date. In addi...
متن کاملEnergy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملSESOS: A Verifiable Searchable Outsourcing Scheme for Ordered Structured Data in Cloud Computing
While cloud computing is growing at a remarkable speed, privacy issues are far from being solved. One way to diminish privacy concerns is to store data on the cloud in encrypted form. However, encryption often hinders useful computation cloud services. A theoretical approach is to employ the so-called fully homomorphic encryption, yet the overhead is so high that it is not considered a viable s...
متن کاملTotal Variation Regularization for Edge Preserving 3D SPECT Imaging in High Performance Computing Environments
Clinical diagnosis environments often require the availability of processed data in real-time, unfortunately, reconstruction times are prohibitive on conventional computers, neither the adoption of expensive parallel computers seems to be a viable solution. Here, we focus on development of mathematical software on high performance architectures for Total Variation based regularization reconstru...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. J.
دوره 46 شماره
صفحات -
تاریخ انتشار 2003